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Intermittency effects inherent in turbulence
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Intermittency effects are swift variations locally seen on a time sequence of turbulent velocity. The
anomalous scaling property is attributed to contamination of the inertial subrange analysis by the inter-
mittency effects limited basically to the viscous subrange. We explain that the contamination can be re-
moved by Gabor functions with high frequency resolutions (i.e., low time resolutions).

PACS number(s): 47.27.—1, 47.53.+n

The Gabor transform elucidates intermittent structures
in a frequency space of turbulent velocity [1]. The Gabor
transform is an analysis filter with a widely adjustable
quality factor (i.e., Q factor). Let u(¢) be turbulent veloc-
ity, and let g4 (€),7) be a Gabor function characterized by
an angular frequency  and the Q value. The Gabor
transform coefficient of u(¢), Go[u (¢)](Q,t’), is defined
as

Golu (D)1= [ 7 u(Dgo(Qt—1')dt (1)
with
2
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80(Q,1) Vs Qcos(ﬂt+6)exp 2Qt ] . (2)

Here, GQ denotes the Gabor transform operator at a con-
stant Q value, and 0 is a phase shift, the value of which
may arbitrarily be chosen. The admissibility condition
that the Gabor function must satisfy requires that Q > 2.

The analyzing function g,({,¢) represents a Gaussian
amplitude-modulated oscillation. The Gabor transform
analysis extracts (angular) frequency components from
the time sequence of u(z). Most of the frequency com-
ponents extracted are restricted within an interval
(Q—AQ, Q+AQ) around the centered frequency 2, and
the frequency bandwidth is defined as AQ=Q/Q. The
Gabor transform coefficient Gy[u(2)](Q,t') is deter-
mined from a (4Q /) )-size part translating across the
time domain of u(t); therefore, 4Q /) is the time resolu-
tion of g5(Q,7). When Q is large (small), g,(£2,7) is good
(poor) in frequency resolution but poor (good) in time
resolution.

The intermittency can be observed as scale-dependent
changes in the probability density functions (PDFs) of ve-
locity increments u(z +At)—wu(z) [2] and of the wavelet
transform coefficients of u(¢) [1], and also as frequency-
dependent changes in the PDFs of its electrically band-
pass-filtered signals [3] and of its Gabor transform
coefficients [1]. In the inertial subrange (ISR), the scale
or frequency dependence of PDFs indicates the anoma-
lous scaling property of these transformed signals. At
ISR frequencies, the 2nth order moments of
Golu()](Q,t'), M,,(Q,Q), are approximated by the
anomalous scaling law
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M, (Q,0)=(|Gp[u(t)](Q,t")|*") = Q 3)

where ) stands for an averaging procedure across a
domain of the translation time ¢’ and n=1,2,... . The
experimental result shown in Fig. 1, which has already
been given in the previous paper [1], is that the nonlinear
scaling exponent §,,(Q) for n, i.e., the anomalous scaling
property of Go[u(£)](Q,¢’), depends on the Q value. The
Q dependence of §,,(Q) is more remarkable at larger 2n
values. As Q gets large, {,,(Q)’s approach the Kolmo-
gorov scaling exponents §,,(Q)=2n/3. The present
study makes it clear that the Q dependence of &,,(Q) is
due to the intermittency effects inherent in turbulent ve-
locity.

In our experiment, u(?) is a streamwise component of
turbulent velocity measured at a point in a jet air flow
(R, =270). The ISR in which the scaling property is ob-
served is from Q/27=0.024 to 1.5 kHz (from 63 to 1.0
cm in wavelength) without depending on the Q value.
(Our examined frequency range by the Gabor transform
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FIG. 1. Q dependence of £,,(Q).
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is from 3 Hz to 15 kHz.) The accuracy of the measure-
ment of &,,(Q) is from 2% to +6%, and becomes high
with an increase in Q. (The error was evaluated by the
least squares method.)

We elucidate what features the intermittency effects
have on the time sequence of u(¢) and give a lucid ex-
planation of the Q dependence of {,,(Q). In addition, we
offer a full explanation of the following experimental re-
sults: (i) the PDFs of Go[u(#)](Q,t') at frequencies in
the ISR deviate more from Gaussian PDFs in larger-
amplitude events (Fig. 2), and (ii) the obviously intermit-
tent aspect of Gy[u(2)](Q,t') [Fig. 3(a)] is observed when
Q is appropriately small and Q is located in the viscous
subrange (VSR); that is, when the analyzing Gabor func-
tion is good in time resolution.

At high frequencies in the VSR, the Gabor transform
coefficients obtained at small-Q values exhibit an inter-
mittent series of strongly amplitude-modulated oscilla-
tions, as shown in Fig. 3(a). This intermittent aspect be-
comes more and more notable at higher VSR frequencies.
This experimental result indicates that the major factors
causing the intermittent aspect exist locally in the time
sequence of u(t). Obviously, these factors are the inter-
mittency effects, which should be observed as swift varia-
tions occurring in the time sequence of u (¢). The most
striking swift variations are observed as very narrow
pulselike and very short duration pulsationlike variations,
some of which are indicated by arrows in Fig. 3(b). The
amplitude-modulated oscillations are caused by swift
variations, which an analyzing Gabor function senses.

First, let us consider a small-Q situation where the Ga-
bor transform analysis can independently detect each of
the intermittency effects. Figure 4 shows a schematic il-
lustration of the way that the intermittency effects pro-
duce the amplitude-modulated oscillations, where the
rectangular pulses in 4(a) represent the intermittency
effects, the location and the strength of which are
schematically represented by the width and the height of
the rectangular pulses, respectively; the pulse width may
be assumed to be the duration of the pulsation; 4(b) shows
such a small-Q Gabor function; and 4(c) shows a time se-
quence of Gabor transform coefficients obtained for the
pulse sequence 4(a). Thus, when Q is located at a VSR
frequency, the intermittent series of amplitude-modulated
oscillations seen in Fig. 3(a) is caused by the intermitten-

_'0910 [p(Gcl\U)]

1
-30 -20 -0
) Gau
FIG. 2. Normalized PDF of Gglu()](Q,t'), p(Ggou), at
0=3.5 and Q/27=212 Hz (a low frequency in the ISR); the
solid line indicates a Gaussian curve of a standard deviation o.
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FIG. 3. (a) Time sequence of Gy[u(2)](Q,t') at Q=3.7 and
Q /27 =4 kHz; (b) the time sequence of u(¢).

cy effects inherent in u (¢). (It is of no importance to find
a one-to-one correspondence between the amplitude-
modulated oscillations and the intermittency effects.)

When () is larger than the ISR high-frequency end (1.5
kHz) of the turbulence used in our experiment and
Q=3.5, the Gabor function shown in Fig. 4(b) is of a
very high time resolution, such as 4Q /1 <1.5 ms. At
such a time resolution, the Gabor transform coefficients
can hardly be affected by the main velocity components
fluctuating at time scales considerably longer than 1.5
ms. Consequently, as presumed from Fig. 3(b), such a
small-Q Gabor function can separate the intermittency
effects of VSR time scales and the main velocity fluctua-
tions of ISR ones rather well; therefore, when the time
resolution is good enough, the Gabor transform
coefficients at VSR frequencies exhibit intermittent as-
pects.

Next, let us consider a large-Q situation where an
analyzing Gabor function can cover several or many in-
termittency effects: the time resolution of g,(Q,¢) is very
poor. Then, these intermittency effects covered by the
Gabor function take either the in-phase or out-of-phase
mode. The in-phase effects make a positive contribution
to the integral in Eq. (1), and the out-of-phase effects
make a negative contribution. Hence, the effects of the
in-phase and the out-of-phase factors cancel each other,
so that the large-Q Gabor function decreases the contam-
ination of the ISR analysis by the intermittency effects.
When, for example, /27 < 1.5 kHz and Q =80, the Ga-
bor function is of a very low time resolution, such as
40/ >34 ms. As presumed from Fig. 3(b), such a

(a) (b)

FIG. 4. Gabor transform scheme. (a) The time sequence of
rectangular pulses representative of the intermittency effects; (b)
the Gabor function at Q=3.5 (e.g., 4Q/Q=1.1 ms at a VSR
frequency Q/27m=2 kHz); (c) the sequence of Gabor transform
coefficients.
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large-Q Gabor function can simultaneously detect many
intermittency effects. Consequently, the Gabor trans-
form coefficients can involve slight contamination by the
intermittency effects inherent in the VSR.

As the Q value increases, the contamination decreases.
This decrease in contamination presents the asymptotic
feature that the increase in Q makes the scaling indices
£,,(Q) close to the Kolmogorov scaling indices (Fig. 1).
At poor time resolutions (i.e., large-Q values), the Gabor
function cannot discriminate each of the intermittency
effects. Similarly, even when () is located in the VSR, the
large-Q Gabor functions cannot discriminate each of the
intermittency effects. This fully explains the Q depen-
dence of the PDF of the Gabor transform coefficients.
The asymptotic behavior of §,,(Q) indicates the Q depen-
dence that the Gabor transform coefficients, with an in-
crease in Q, take PDFs closer to Gaussian PDFs. How-
ever, when the Q value is small, the PDFs obtained at
ISR frequencies have the large-amplitude events deviat-
ing from Gaussian PDFs, as shown in Fig. 2. The large-
amplitude events are chiefly produced by contamination
arising at small-Q values.

In conclusion, the intermittency effects are basically
limited to the VSR, being swift variations in velocity fluc-
tuations. In the limit of an infinitely long ISR, there is no
anomalous scaling, i.e., no non-Gaussian intermittency.

The velocity fluctuations at ISR frequencies have very
weak intermittency effects, which gradually get strong at
higher frequencies close to the VSR. There is an indica-
tion that the intermittency effects appear. There is some
theoretical evidence that supports the VSR origin of in-
termittency [4].

According to the Kolmogorov theory [5], the kinetic
energy cascading through an infinitely long ISR must
have a constant average rate all over the frequency
(wave-number) space. However, in real turbulent fluid
motion, the rate of cascading kinetic energy may be as-
sumed to fluctuate during the process of its time evolu-
tion. The fluctuations in the rate increase at smaller
scales, which provide the VSR with the intermittent
features. Then, the kinetic energy cascading at fast rates
survives in regions of very small scales without being dis-
sipated by the viscous effects in the process of the time
evolution of turbulent fluid motion [6], and the swift vari-
ations appear locally on the time sequence of u(#). The
intermittency effects break down the self-similar property
of turbulent velocity. The viscous effects on turbulent
fluid motion are supposed to participate in the fluctua-
tions in the energy cascade rate [6]. Hence, the intermit-
tency effects can closely be related to the viscous effects.
This reasoning does not contradict the fact that the Kol-
mogorov scaling law can be realized in the inviscid limit.
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